Propiedades de las relaciones (Reflexiva, Simétrica, Asimétrica, Anti simétrica, Transitiva)
Las relaciones se pueden clasificar de acuerdo al tipo de asociación que hay en sus elementos como: uno-a-uno 1–1, uno-a-mucho 1-M, muchos-a-uno M-1 o muchos-a-muchos M-M. Recordemos que una relación es un conjunto de pares ordenados.
Relación Reflexiva y Irreflexiva
Teorema: Una relación R en un conjunto es reflexiva si y solo si la diagonal principal de la matriz asociada a la relación tiene únicamente unos. De la misma forma es Irreflexiva si tiene solamente ceros.
Una relación A es:
Reflexiva: Si todo elemento en A esta relacionado con sigo mismo, con símbolos:
Irreflexiva: Si ningún elemento en A esta relacionado con sigo mismo, con símbolos:
Relación Simétrica, Asimétrica, Antisimétrica Y Transitiva
Teorema: Una relación R es simétrica si y solo si los elementos opuestos con respecto a la diagonal principal son iguales.
Simétrica: Si cuando un elemento está relacionado con un segundo elemento, el segundo también se relaciona con el primero, con símbolos: (x ,y) ∈ R ⇒ (y ,x) ∈ R
Asimétrica: Una relación R en un conjunto A es asimétrica si cuando a R b, entonces b Ra. De esto se sigue con que R no es simétrica si se tiene a y b e A con ambos a R b y b R a.
Teorema: Una relación R en conjunto es Antisimétrica si y solo si los elementos opuestos con respeto a la diagonal principal no pueden ser iguales a 1; esto es, puede aparecer 0 con 1 o pueden aparecer ceros.
Antisimétrica: Si cuando un elemento está relacionado con un segundo elemento diferente, el segundo no se relaciona con el primero, con símbolos:∀x, y, ((x, y) ∈ R ∧ (y, x) ∈ R → x = y)
La antisimetría no es lo opuesto de la simetría.
Transitiva: Si cuando un elemento esta relacionado con un segundo elemento y el segundo esta relacionado con un tercero, entonces el primero esta relacionado con el tercero:
Ejemplo para todas las relaciones
Cuando tenemos la matriz de una relación es muy fácil verificar si es reflexiva, Irreflexiva, Simétrica, Asimétrica, Antisimétrica, Transitiva:
Ejemplo.- Sea A = { a, b, c, d, e }
R1 = { (a,a), (b,b), (a,c), (b,c), (c,a), (d,d) }
R2 = { (a,a), (a,d), (c,b), (d,a), (c,e), (e,e) }
R3 = { (a,a), (b,b), (c,c), (d,d), (e,e), (b,c), (b,a) }
R4 = { (a,a), (a,b), (b,a), (b,b), (b,c), (b,e), (c,e), (b,d), (d,a), (e,e) }
R5 = { (a,c), (a,e), (e,c), (b,c) }
R6 = { ( (a,a), (b,b), (c,c), (d,d), (e,e), (a,e), (b,c), (c,b), (e,a) }
R7 = { (a,b), (b,d), (c,a), (d,e), (e,c), (b,c), (b,a) }
Si observamos la figura podemos darnoscuenta que R3 y R6 son Reflexivas, y también podemos ver que R5 y R7 son Irreflexivas.
De las relaciones anteriores R6 es simétrica, R3 y R5 son antisimétricas; R3, R4 y R5 son Transitivas.
No hay comentarios.:
Publicar un comentario