3.4 Inducción matemática

 La inducción es un razonamiento que permite demostrar una infinidad de proposiciones, o una proposición que depende de un parámetro n que toma una infinidad de valores, usualmente en el conjunto de los enteros naturales N.

EJEMPLO

Demostraremos que:

1+2+3+…………+n = n(n+1), ” n perteneciente a los naturales (*)

2

1= 1(1+1). Por lo tanto 1 satisface la proposición (*)

2

Supongamos valida la proposición (*) para k perteneciente a los Naturales, es decir supongamos que:

1+2+3+………+k = k (k+1). (Hipótesis de inducción).

2

Demostremos que k – 1 también satisface la proposición (*), es decir, demostremos que:

1+2+3+………+k+(k+1) = (k+1)(k+2).

2

Demostración:

(1+2+3+…….+k)+(k+1) = k(k+1) + (k+1)

2

= k(k+1)+2(k+1)

2

= (k+1)(k+2)

2

Ejemplo:

Demuestre usando inducción que:

2 + 4+ 6 + 8+……….+ 2n = n (n+1)

n

2 i = n (n+1)

i =1

n=1

1

2*1 = 1(1+1)

i =1

= 1*2

= 2

Suponer valido para n = k

k

2i = k (k+1) Esto es la hipótesis

i =1

Demostrar para n = k+1

K+1

2i = (k+1) (k+2)

i =1

k+1 k

2i = 2i + 2(k+1)

i =1 i =1

= k (k+1) + 2(k+1)

= (k+1) (k+2)

No hay comentarios.:

Publicar un comentario

MATEMATICAS DISCRETAS UNIDAD 5

  Instituto Tecnológico de Tepic Datos del alumno Nombre del alumno: Oswaldo Tristán Díaz Velázquez Grupo: 5A Carrera:    Ingeniería en Sist...